San José State University |
---|
applet-magic.com Thayer Watkins Silicon Valley, Tornado Alley & the Gateway to the Rockies USA |
---|
The Explanation of Velocities in Fluid Drainage from One Potential Energy Level to Another |
---|
The ultimate purpose of this analysis is to explain the wind velocities in tropiical cyclones (hurricanes, typhoons, etc.) and tornadoes. It is however convenient for the analysis to start with water draining down drains.
When water flows from a vertical level of z_{1} to vertical level of z_{2} it loses potential energy per unit mass equal to gΔz where Δz equals (z_{1}−z_{2]}) and g is the acceleration due to gravity. That loss of potential energy must go into kinetic energy. The gain in kinetic energy per unit mass in the fluid is Δ(½v(z)²) where v(z) is fluid velocity at vertical level z. Consider the changes over a time interval Δt and the limits as that interval goes to zero.
Thus a balance of energy requires that
This just says that acceleration is equal to g.
But this can be expressed as
where C is a constant.
The quantity z is just the distance which the water has fallen. If z=0 then v(z)=0 so the contant C is equal to zero. Therefore
The fluid velocity v(z) is made up of two components: The vertical velocity v_{z} and the tangential velocity v_{θ}, where
Assume the drain is circular with the radius R being a decreasing function of vertical level; i.e., R(z). Assume for now that the vertical velocity is the same at throughout a vertical level. The mass per unit time M that passes through the circular area at level z is given by
where μ is the density of water.
Thus
Therefore
But the tangential velocity is proportional to the distance r from the center of the drain; i.e.;
where ω(z) is the angular rate of twisting of the water stream at level z. Its value is give by the condition
(To be continued.)
HOME PAGE OF Thayer Watkins |