San José State University 

appletmagic.com Thayer Watkins Silicon Valley & Tornado Alley USA 


Nuclei are held together by the formation of spin pairs of nucleons (neutrons and protons) and the mutual attraction between neutrons and protons. The conventional theory conflates these two disparate forces refers to it as the nuclear strong force. The force involved in the spin pairing of nucleons is strong and an attraction but it is exclusive in the sense that one neutron can pair with one proton and one other neutron and no more. There is another force involved and it is nonexclusive. It is the force of nucleonic interaction and will be referred to as the interactive force. The evidence is that neutrons are repelled from each other through the this interactive force. Protons are also repelled from each other not only through the electrostatic force but also through this interactive force. But a neutron and a proton are attracted to each other through the interactive force. Therefore there has to be some balance between the number of neutrons and the number of protons for a nucleus to hold together. If there are too many protons compared to the number of neutrons the repulsion between the protons overwhelms the attraction between neutrons and protons. Likewise if there are too few protons the repulsion between the neutrons overwhelms the neutronproton attraction.
There is an asymmetry between the numbers of neutrons and protons in stable nuclei that indicates the strength of the repulsion between protons due to the interactive force is greater than that between neutrons. The interactive force may drop off faster with distance than the electrostatic force so the electrostatic repulsion between protons becomes relatively stronger in larger nuclides where the average distance between protons becomes greater.
The situation is made more complicated by the fact that neutrons form spin pairs with each other despite their mutual repulsion through the interactive force and protons do likewise. Also a neutron where possible will form a spin pair with a proton. But spin pair formation is exclusive in the sense noted above. The interaction force between nucleons is not exclusive so a large number of interactions of smaller magnitude may match or exceed the effect of the spin pair formations. Thus spin pair formation is relatively more important for the smaller nuclides.
There are 2931 nuclides stable enough to have had their masses measured and their binding energies computed. For each number of neutrons the minimum number and the maximum number of protons were compiled. The results are displayed in the following graph.
In the graph there is some piecewise linearity displayed.
A Previous study developed evidence that the nucleonic interactive charge of a neutron is of the opposite sign and smaller in magnitude from that of a proton. Let ν denote the ratio of the nucleonic charge of a neutron to that of a proton. The actual value of ν is undoubtedly a simple fraction. Previous work indicated that the relative magnitude of the nucleonic charge of a neutron relative to that of a proton is − 2/3. Furthermore such a difference in charge of the nucleons can account for the limits to the values of the proton numbers of the known nuclides, shown above.
Another study demonstrated that the binding energy increments experienced by additional nucleons to a nuclide is a function of two components. One is simply the difference in the number of protons and neutrons in the nuclide. This component has to do with the formation of a neutronproton spin pair. The other component has to do with the interaction force between nucleons and it is a function of the net nucleonic charge of the nuclide. If p and n are the numbers of protons and neutrons, respectively, of the nuclide then the net nucleonic charge ζ is
where ν is the magnitude of the nucleonic charge of the neutron relative to that of a proton.
The binding energy associated with the interaction force between nucleons is a nonlinear function of ζ, but for small values of ζ to a reasonable approximation it is kζ, where k is a constant. Nucleons as noted above also form spin pairs. For example, the addition of another neutron to a nuclide with an odd number of neutrons would result in the formation of a neutronneutron spin pair. Let E_{nn} be the binding energy associated with the formation of a neutronneutron spin pair. If there are unpaired protons in the nuclide the addition of another neutron would result in the formation of a neutronproton spin pair with a binding energy of E_{np}. The binding energies associated with the formation of spin pairs are not really constants independent of the levels of n and p but for the present they are assumed to be constants.
Let IBEn(n, p) be the incremental binding energy of a neutron in a nuclide with n neutrons and p protons; i.e.,
The energy change associated with the addition of another neutron to a nuclide with p protons and n neutrons in which n is odd and less than p is
The minimum number of protons for a nuclide with p protons is reached when IBEn≤0. This means that
Thus the slope of the relation between p_{min} and n will give the value of ν.
The incremental binding energy of a proton, IBEp(n, p), in a nuclide with n neutrons and p protons is given by
The binding energy of an additional proton to a nuclide with p protons and n neutrons in which p is odd and less than n is
For IBEp to be positive requires a maximum p of
Thus the slope of the relationship between p_{max} and n should be ν the same as the slope of the relationship between p_{min} and n. p>The relationships are not linear over the whole range of values of n but over some intervals they are reasonably close to being linear. For the maximums an approximating line goes from the nuclide with 31 neutrons and 34 protons to the nuclide with 88 neutrons and 77 protons. The difference in the numbers for this line is 57 neutrons and 43 protons and. The ratio of these two quantities is 0.75439. This should be ν.
For the minimums an approximating line runs from the nuclide with 49 neutrons and 28 protons to the nuclide with 94 neutrons and 55 protons. The difference in the proton numbers is 27 and in the neutron numbers 45. Their ratio is 0.6. This is an alternate estimate of ν.
Thus the maximum proton line gives an estimate of ν of (3/4) and the minimum proton line an estimate of (3/5). The average of these two values is 27/40=0.675, or about 2/3. This is the magnitude of the ratio of the nucleonic charge of a neutron to that of a proton; the numerical ratio is −2/3.
Another study shows that a given value of (n+p) the nuclide with the minumum energy and hence the one likely to be most stable is
For ν=2/3 this evaluates to
The stablest nuclides typically do have 50 percent more neutrons than protons.
The data for the previous graph are displayed below.
The Maximum and Minimum Number of Protons Possible for Each Level of the Number of Neutrons 


#n  min #p  max #p 
1  1  4 
2  1  6 
3  1  7 
4  1  8 
5  1  9 
6  2  10 
7  2  11 
8  2  14 
9  3  15 
10  4  16 
11  5  17 
12  5  18 
13  5  19 
14  5  20 
15  6  21 
16  6  22 
17  7  23 
18  8  24 
19  9  26 
20  9  26 
21  10  27 
22  10  28 
23  11  29 
24  11  30 
25  12  31 
26  13  32 
27  14  33 
28  14  33 
29  15  33 
30  15  33 
31  15  34 
32  16  35 
33  16  36 
34  17  37 
35  18  38 
36  19  38 
37  20  38 
38  21  39 
39  22  40 
40  23  41 
41  24  42 
42  25  43 
43  26  44 
44  27  45 
45  27  46 
46  28  46 
47  28  47 
48  28  48 
49  28  49 
50  28  50 
51  29  50 
52  30  51 
53  31  51 
54  32  52 
55  33  53 
56  33  54 
57  34  55 
58  34  56 
59  35  56 
60  36  57 
61  36  58 
62  37  59 
63  37  59 
64  37  59 
65  37  59 
66  38  60 
67  39  61 
68  40  62 
69  41  63 
70  42  63 
71  42  63 
72  43  64 
73  44  65 
74  44  66 
75  45  67 
76  45  68 
77  46  69 
78  47  70 
79  47  71 
80  47  71 
81  48  71 
82  48  72 
83  49  73 
84  49  74 
85  49  75 
86  50  76 
87  50  76 
88  51  77 
89  52  77 
90  52  78 
91  53  78 
92  54  79 
93  54  79 
94  55  79 
95  55  80 
96  55  81 
97  56  81 
98  57  81 
99  58  82 
100  59  82 
101  60  82 
102  61  83 
103  62  83 
104  63  83 
105  64  83 
106  65  84 
107  66  85 
108  68  85 
109  68  85 
110  69  86 
111  70  86 
112  71  86 
113  71  87 
114  72  87 
115  73  88 
116  74  88 
117  75  88 
118  76  89 
119  76  89 
120  76  90 
121  77  90 
122  77  91 
123  78  91 
124  78  91 
125  79  91 
126  79  92 
127  80  92 
128  80  92 
129  81  92 
130  82  92 
131  82  92 
132  82  93 
133  83  93 
134  84  94 
135  85  94 
136  85  95 
137  85  95 
138  85  96 
139  86  98 
140  86  98 
141  86  99 
142  86  100 
143  87  100 
144  87  101 
145  87  101 
146  88  101 
147  89  102 
148  90  103 
149  91  104 
150  92  105 
151  93  105 
152  94  106 
153  94  107 
154  95  108 
155  96  108 
156  96  109 
157  97  110 
158  98  110 
159  100  110 
160  102  110 
161  108  111 
162  109  110 
163  110  110 
HOME PAGE OF Thayer Watkins 