San José State University |
---|
applet-magic.com Thayer Watkins Silicon Valley & Tornado Alley USA |
---|
the Schroedinger Equation |
Electromagnetic radiation has the nature of a stream of particles as well as waves. The particles are called photons. As waves the radiation has a frequency ν, expressed in cycles per second. The energy of a photon is equal to hν, where h is Planck's constant. There is another frequency, called the angular frequency, which in radians per second and is the regular freqency times 2π. Let ω denote the angular frequency. Since ω=2πν
Planck's constant divided by 2π is called h-bar.
A wave has a wave length ψ. Wave length and frequency are tied together by their product being equal to the speed of propagation. For electromagnetic radiation the speed of propagation is about 3×10^{8} meter per second. This is called the speed of light in a vacuum and is usually denoted as c. Thus
In terms of the angular frequency ω this above relationship is
where κ=2π/ψ=ω/c is called the wave number
Louis de Broglie conjectured that just as radiation had particle-like characteristics then matter might have wave-like characteristics. De Broglie further suggested that the wave length λ of a particle is given by
where p is the linear momentum of the particle. This proved to be true.
The probability density function for a particle is the probability per unit volume of space and time of finding the particle near any particular location at any particular time. Let (x, y, z) be the space coordinates and t the time coordinate. Then the probability density function φ(x, y, z, t) is such that the probability P of finding the particle in a volume V and in an interval of time T is given by:
The function φ(x,y,z,t) must be everywhere nonnegative and such that its integration over all space and all time is equal to 1.0. The dimensions of φ are [L^{-3}T^{-1}].
In physics it has proven fruitful to work not with the probability density function itself but with a complex-valued function ψ(x,y,z,t) such that
where ψ* is the complex conjugate of ψ. This definition guarantees that φ is nonnegative. Note however that the dimensions of ψ are [L^{-3/2}T^{-1/2}].
Consider a particle with a momentum vector p moving in a region of constant potential energy. It will move along a straight line in the direction of its momentum vector. Then the propagation vector q is given by
Such motion is described as a plane wave with the following wave function
where i is the imaginary unit and A is a complex constant. (Note that A could be a real number since the real numbers are special cases of complex numbers.)
In a one dimensional space a particle traveling along the x-axis, at any particular time, the probability density φ=ψψ*=|ψ|² has the form
Since κ=ph and ω=E/h the wave function for a plane wave can be expressed
as
Now the task is to find the partial differential equation that has the above wave function as a solution.
In Cartesian coordinates the quantity p·r has the form
The differentiation of ψ once with respect to x gives
and a second time
Likewise the second derivatives of ψ with respect to y and z produces analogous expressions. When these second derivatives are added together the result is
The expression ∇² is called the Laplacian operator. Technically it is the divergence of the gradient of its scalar argument.
The differentiation of the wave function with respect to time gives
The energy E of a particle is the sum of its kinetic energy and its potential energy V; thus
where m is the mass of the particle.
The previously derived expressions for Eψ and p²ψ may be substituted into the above equation to obtain
This is the Schroedinger Equation.
The expression [−(h²/2m)∇² + V] is usually denoted as an operator H and
hence the Schroedinger Equation is expressed in the form
This equation from which the wave equation for a particle moving in a field of constant potential energy is also satified for a particle moving in a region of varying potential energy.
HOME PAGE OF Thayer Watkins |