San José State University
Thayer Watkins
Silicon Valley
& Tornado Alley

The Testing of the Alpha Module Model of Nuclear Structure
on the Nuclides Composed Entirely of Alpha Modules


The details of the alpha module model of nuclear structure are given elsewhere. Briefly the basis for it is that whenever possible a nucleon (neutron or proton) forms a spin pair with one other nucleon of the same type and with one nucleon of the opposite type. This leads to chains composed of modules of the form -n-p-p-n- (or equivalently -p-n-n-p-). These chains form rings which rotate in four modes; as a vortex ring, rotation about an axis through the center of the ring and perpendicular to its plane and flipping rotation about two diameters of the ring. These rotations take place so rapidly that the alpha module ring dynamically appears as a sphere with the nucleons smeared uniformly throughout a spherical shell.

The occupancies of the spherical shells are basically what were found by Maria Goeppert Mayer and Hans Jensen and labeled nuclear magic numbers. The Goeppert Mayer and Jensen magic numbers were based upon the numbers of stable isotopes and isotones. Their values were (2, 8, 20, 28, 50, 82, 126). The patterns of incremental binding energies justify a modified sequence of (2, 6, 14, 28, 50, 82, 126). The numbers 8 and 20 instead represent the filling of subshells within shells.

The Alpha Nuclides

Here is a graph of the binding energies of nuclides which could be composed entirely of alpha modules. They will be referred to as alpha nuclides.


The linearity of the display is impressive. A regression of the binding energy BE on the number of apha modules #α gives

BE = 33.5053#α + 0.5772

The coefficient of determination (R²) for this equation is 0.99903 and the standard error of the estimate is 8.1653 MeV. The t-ratio for the regression coefficient is 156.9.

As impressive as is this statistical performance it can be improved considerably. First consider the graph of the incremental binding energies.

This graph reveals that there are slight changes in the slope of the relationship at critical values of #α. One critical value is #α equal to 14, which corresponds to 28 neutrons and 28 protons. Twenty eight is a magic number corresponding to the filling of a shell. Another critical number is at #α equal to 2, which corresponds to 4 neutrons and 4 protons. Another is for #α equal to 7 which corresponds to 14 neutrons and 14 protons, which substantiates 14 as a magic number.

When the regression equation involves changes of slope at 4 and 14 the result is

BE = 28.20949#α + 7.39373δ(#α-2) −4.62538δ(#α-14) +0.02873

where δ(z) is the ramp function and is equal to z if z>0 and zero otherwise.

The coefficient of determination for this equation is 0.999987 and the standard error of the estimate is 0.97 MeV. The average value of BE is 419.4 MeV so the standard error of the estimate of 0.97 MeV corresponds to a coefficient of variation of 0.231 of 1 percent.

The inclusion of δ(#α-7) raises the R² value to 0.9999886 and reduces the standard error of the estimate to 0.944 MeV and the coefficient of variation to 0.225 of 1 percent.

The regression results are

BE = 27.82853#α + 8.02828δ(# α-2) −0.38347δ(#α-7) −4.45945δ(#α-14) +0.15572

The t-ratio for the coefficient of the δ(#α-7) variable is however only -1.48 so it is not significantly different from 0 at the 95 percent level of confidence.


The binding energies of the alpha nuclides are overwhelmingly explained by a bent-line function of the number of the number of alpha modules. The critical points correspond generally to the magic numbers of a nuclear shell model.

HOME PAGE OF applet-magic
HOME PAGE OF Thayer Watkins